Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
PLoS One ; 19(5): e0300983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723056

RESUMO

OBJECTIVES: Understanding the health literacy status of patients with gout diagnosis is essential for improving the health of this population. Our study aimed to investigate the latent profiles of health literacy in patients with gout and to analyze differences in characteristics across potential profiles. METHODS: This was a cross-sectional study. Eligible participants attended the Shandong Gout Medical Center, from March 2023 to May 2023 and self-reported gout diagnosis. We used the Health Literacy Scale for Patients with Gout designed and validated by our team. The scale had good reliability and validity among patients with gout. 243 patients completed the Demographic Information Questionnaire and the Health Literacy Scale for Patients with Gout. We used latent profile analysis to identify the latent profiles of gout patients' health literacy. We used Chi-square tests with Bonferroni correction to analyze differences in demographics and illness characteristics across identified profiles. RESULTS: Three profiles of patients with gout emerged (prevalence): the low literacy-low critical group (21.81%), the moderate literacy group (42.79%), and the high literacy-stable group (35.39%). The three groups differed in age, education level, monthly income, disease duration, and place of residence (P<0.01). CONCLUSIONS: The health literacy of patients with gout was heterogeneous. Healthcare professionals should adopt targeted interventions based on the characteristics of each latent health literacy profile to improve the health literacy level of patients with gout.


Assuntos
Gota , Letramento em Saúde , Humanos , Gota/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Adulto , Idoso , Inquéritos e Questionários
2.
Fish Shellfish Immunol ; 149: 109600, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701991

RESUMO

Excess utilization of plant protein sources in animal feed has been found to adversely affect the antioxidant properties and immunity of animals. While the role of gut microbes in plant protein-induced inflammation has been identified in various models, the specific mechanisms regulating gut microbes in crustaceans remain unclear. Accordingly, this study was designed to investigate the effects of replacing fishmeal with soybean meal (SM) on the hepatopancreas antioxidant and immune capacities, and gut microbial functions of crayfish, as well as the potential microbial regulatory mechanisms. 750 crayfish (4.00 g) were randomly divided into five groups: SS0, SS25, SS50, SS75, and SS100, and fed diets with different levels of soybean meal substituted for fishmeal for six weeks. High SM supplementation proved detrimental to maintaining hepatopancreas health, as indicated by an increase in hemolymph MDA content, GPT, and GOT activities, the observed rupture of hepatopancreas cell basement membranes, along with the decreased number of hepatopancreatic F cells. Moreover, crayfish subjected to high SM diets experienced obvious inflammation in hepatopancreas, together with up-regulated mRNA expression levels of nfkb, alf, and tlr (p<0.05), whereas the lzm mRNA expression level exhibited the highest value in the SS25 group. Furthermore, hepatopancreas antioxidant properties highly attenuated by the level of dietary SM substitution levels, as evidenced by the observed increase in MDA content (p<0.05), decrease in GSH content (p<0.05), and inhabitation of SOD, CAT, GPx, and GST activities (p<0.05), along with down-regulated hepatopancreas cat, gpx, gst, and mmnsod mRNA expression levels via inhibiting nrf2/keap1 pathway. Functional genes contributing to metabolism identified that high SM diets feeding significantly activated lipopolysaccharide biosynthesis, revealing gut dysfunction acted as the cause of inflammation. The global microbial co-occurrence network further indicated that the microbes contributing more to serum indicators and immunity were in module eigengene 17 (ME17). A structural equation model revealed that the genes related to alf directly drove the serum enzyme activities through microbes in ME17, with OTU399 and OTU533 identified as major biomarkers and classified into Proteobacteria that secrete endotoxins. To conclude, SM could replace 25 % of fishmeal in crayfish diets without negatively affecting immunity, and antioxidant capacity. Excessive SM levels contributed to gut dysfunction and weakened the innate immune system of crayfish.

3.
Sci Total Environ ; 931: 172897, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697527

RESUMO

Microorganisms play pivotal roles in different biogeochemical cycles within coral reef waters. Nevertheless, our comprehension of the microbially mediated processes following environmental perturbation is still limited. To gain a deeper insight into the environmental adaptation and nutrient cycling, particularly within core and noncore bacterial communities, it is crucial to understand reef ecosystem functioning. In this study, we delved into the microbial community structure and function of seawater in a coral reef under different degrees of anthropogenic disturbance. To achieve this, we harnessed the power of 16S rRNA gene high-throughput sequencing and metagenomics techniques. The results showed that a continuous temporal succession but little spatial heterogeneity in the bacterial communities of core and noncore taxa and functional profiles involved in nitrogen (N) and phosphorus (P) cycling. Eutrophication state (i.e., nutrient concentration and turbidity) and temperature played pivotal roles in shaping both the microbial community composition and functional traits of coral reef seawater. Within this context, the core subcommunity exhibited a remarkably broader habitat niche breadth, stronger phylogenetic signal and lower environmental sensitivity when compared to the noncore taxa. Null model analysis further revealed that the core subcommunity was governed primarily by stochastic processes, while deterministic processes played a more significant role in shaping the noncore subcommunity. Furthermore, our observations indicated that changes in function related to N cycling were correlated to the variations in noncore taxa, while core taxa played a more substantial role in critical processes such as P cycling. Collectively, these findings facilitated our knowledge about environmental adaptability of core and noncore bacterial taxa and shed light on their respective roles in maintaining diverse nutrient cycling within coral reef ecosystems.

4.
Sensors (Basel) ; 24(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38676269

RESUMO

The intelligent monitoring of cutting tools used in the manufacturing industry is steadily becoming more convenient. To accurately predict the state of tools and tool breakages, this study proposes a tool wear prediction technique based on multi-sensor information fusion. First, the vibrational, current, and cutting force signals transmitted during the machining process were collected, and the features were extracted. Next, the Kalman filtering algorithm was used for feature fusion, and a predictive model for tool wear was constructed by combining the ResNet and long short-term memory (LSTM) models (called ResNet-LSTM). Experimental data for thin-walled parts obtained under various machining conditions were utilized to monitor the changes in tool conditions. A comparison between the ResNet and LSTM tool wear prediction models indicated that the proposed ResNet-LSTM model significantly improved the prediction accuracy compared to the individual LSTM and ResNet models. Moreover, ResNet-LSTM exhibited adaptive noise reduction capabilities at the front end of the network for signal feature extraction, thereby enhancing the signal feature extraction capability. The ResNet-LSTM model yielded an average prediction error of 0.0085 mm and a tool wear prediction accuracy of 98.25%. These results validate the feasibility of the tool wear prediction method proposed in this study.

5.
J Ethnopharmacol ; 325: 117852, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38307356

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gerberae Piloselloides Herba (GPH) is derived from Gerbera piloselloides (Linn.) Cass. It is a commonly used traditional medicine in China, featured by its special bioactivities as antitussive, expectorant, anti-asthma, anti-bacterial and anti-tumor. It is often used as an effective treatment for cough and sore throat as well as bronchial asthma (BA) in China. It was demonstrated in our previous studies that GPH exerted significant effects on the treatment of BA, but its underlying mechanism remains unclear. AIM OF THE STUDY: This study was aimed at revealing the mechanism through which GPH protects against BA. MATERIALS AND METHODS: The protective effect of GPH against BA was evaluated in a mouse model of BA induced by ovalbumin. Through integrated metabolomics and transcriptomics analysis, the most critical pathways were discovered. The effects of GPH in regulating these pathways was verified through molecular biology experiments and molecular docking. RESULTS: GPH have anti-BA effects. In plasma and lung tissue, 5 and 17 differentially expressed metabolites (DEMs), respectively, showed a reversed tendency in the GPH group compared with the model group; apart from gamma-aminobutyric acid and butyrylcarnitine, these DEMs might aid in BA diagnosis. The DEMs were involved primarily in the regulation of lipid metabolism, followed by glucose metabolism and amino acid metabolism. Transcriptomic analysis indicated that GPH modulated 268 differentially expressed genes (DEGs). Integration analysis of metabolomics and transcriptomics revealed that GPH might regulate the PPAR signaling pathway, thus affecting the expression of key gene targets such as Cyp4a12a, Cyp4a12b, Adh7, Acaa1b and Gpat2; controlling fatty acid degradation, unsaturated fatty acid biosynthesis, glycerophospholipid metabolism and other lipid metabolic pathways; and ameliorating BA. This possibility was confirmed through reverse-transcription quantitative polymerase chain reaction, western blotting, immunofluorescence and molecular docking. CONCLUSION: GPH was found to activate the PPAR signaling pathway, decrease the levels of Cyp4a12a and Cyp4a12b, and increase the levels of Adh7, Acaa1b and Gpat2, thereby regulating lipid metabolism disorder, decreasing the generation of inflammatory mediators and limiting lung injury.


Assuntos
Asteraceae , Asma , Animais , Camundongos , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo , Metabolômica , Asma/tratamento farmacológico , Asma/genética , Perfilação da Expressão Gênica
6.
IEEE Trans Cybern ; PP2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408004

RESUMO

Existing scalable control methods mainly rely on a fixed block-diagonal structure for the Lyapunov matrix, potentially resulting in numerical infeasibility issues. To overcome this limitation, this article proposes a novel scalable and reliable control scheme for dc microgrids. Initially, a general model for dc microgrids is established to enhance reliability, considering scenarios involving loss of control effectiveness (LoCE) and offset faults. Subsequently, a structured free-weight matrix technique is introduced to mitigate negative coupling effects of power lines, and to address numerical infeasibility by avoiding the assumption about the Lyapunov matrix. Furthermore, the stability of the entire dc microgrid is guaranteed by checking local agent conditions, independently of power line couplings. Therefore, the proposed control scheme ensures plug-and-play scalability with varying number of agents. Finally, theoretical results are validated through numerical simulations using the MATLAB/SimPowerSystems toolbox.

7.
Front Biosci (Landmark Ed) ; 29(2): 71, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38420831

RESUMO

The abnormal intermediate glucose metabolic pathways induced by elevated intracellular glucose levels during hyperglycemia often establish the metabolic abnormality that leads to cellular and structural changes in development and to progression of diabetic pathologies. Glucose toxicity generally refers to the hyperglycemia-induced irreversible cellular dysfunctions over time. These irreversible cellular dysfunctions in diabetic nephropathy include: (1) inflammatory responses, (2) mesangial expansion, and (3) podocyte dysfunction. Using these three cellular events in diabetic nephropathy as examples of glucose toxicity in the diabetic complications, this review focuses on: (1) the molecular and cellular mechanisms associated with the hexosamine biosynthetic pathway that underly glucose toxicity; and (2) the potential therapeutic tools to inhibit hyperglycemia induced pathologies. We propose novel therapeutic strategies that directly shunts intracellular glucose buildup under hyperglycemia by taking advantage of intracellular glucose metabolic pathways to dampen it by normal synthesis and secretion of hyaluronan, and/or by intracellular chondroitin sulfate synthesis and secretion. This could be a useful way to detoxify the glucose toxicity in hyperglycemic dividing cells, which could mitigate the hyperglycemia induced pathologies in diabetes.


Assuntos
Nefropatias Diabéticas , Hiperglicemia , Humanos , Glucose/metabolismo , Nefropatias Diabéticas/complicações , Vias Biossintéticas , Hexosaminas , Hiperglicemia/complicações , Hiperglicemia/metabolismo
8.
Environ Res ; 249: 118254, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301762

RESUMO

The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.


Assuntos
Antibacterianos , Fibra de Carbono , Cefaclor , Eletrodos , Peróxido de Hidrogênio , Ferro , Poluentes Químicos da Água , Fibra de Carbono/química , Antibacterianos/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Ferro/química , Cefaclor/química , Catálise , Carvão Vegetal/química , Técnicas Eletroquímicas/métodos
9.
Environ Res ; 250: 118363, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38331141

RESUMO

The widespread existence of antibiotics in the environment has attracted growing concerns regarding the potential adverse effects on aquatic organisms, ecosystems, and human health even at low concentrations. Extensive efforts have been devoted to developing new methods for effective elimination of antibiotics from wastewater. Herein, a novel process of Fe2+ catalytically enhanced vacuum ultraviolet (VUV) irradiation was proposed as a promising approach for the removal of antibiotic trimethoprim (TMP) in water. Compared with UVC photolysis, VUV photolysis, and UVC/Fe2+, VUV/Fe2+ could increase the pseudo-first-order reaction rate constant of TMP removal by 6.6-38.4 times and the mineralization rate by 36.5%-59.9%. The excellent performance might originate from the synergistic effect of VUV and Fe2+, i.e., VUV irradiation could effectively split water and largely accelerate the Fe3+/Fe2+ cycle to generate more reactive oxygen species (ROS). EPR results indicated that •OH and O2•- were identified as the main ROS in the UVC/Fe2+ and VUV/Fe2+ processes, while •OH, O2•-, and 1O2 were involved in the VUV process. The operating parameters, such as Fe2+ dosage and initial TMP contents, were evaluated and optimized. Up to 8 aromatic intermediates derived from hydroxylation, demethylation, carbonylation, and methylene group cleavage were identified by UPLC-QTOF-MS/MS technique, the possible pathways of TMP degradation were proposed. Finally, the acute and chronic toxicity of intermediates formed during TMP degradation in the VUV/Fe2+ process were also evaluated.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38330573

RESUMO

Objective: To investigate the mortality rate of patients with Omicron infection before and after the implementation of the new crown standard, and to evaluate the impact of new treatment protocols on the mortality rate of patients with Omicron infection. Methods: Clinical data of 1419 Omicron-infected patients treated in our hospital from April 10, 2022 to June 3, 2022 were collected(Patients diagnosed with Omicron infection who met the diagnostic criteria in the "Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 9)"15 and whose nasal/pharyngeal swab samples were typed as Omicron variants by laboratory viral genotyping). They were divided into the observation group (April 25 2022 - June 3 2022) and the control group (April 10 2022 - April 24 2022) before and after the implementation criteria. Clinical data of 1419 patients were collected and compared between the two groups on whether to use anticoagulant drugs, whether to use antiplatelet drugs, gender, whether to use new drugs of thymosin/thymus method, age, whether to use herbal medicine, whether to use Fuzheng prescription, blood routine, liver function, kidney function indicators, mortality of patients. Results: A total of 1419 patients were initially selected; 501 patients with incomplete information were excluded, and finally, 918 patients were included. According to the time period before and after the application criteria, they were divided into an observation group (586 cases) and a control group (332 cases). There were no statistically significant differences in gender, age, antiplatelet drug use, and herbal medicine use between the two groups (P < .05). However, there were significant differences in the use of anticoagulant drugs, thymidine/thymidine drugs, and Fu Zhengfang between the two groups. It was statistically significant that the mortality rate in the observation group (2.39)% was significantly lower than that in the control group (5.12)%. P < .05 White blood cell count, red blood cell ratio, lymphocyte count, hemoglobin, neutrophil count, and neutrophil ratio were not significantly different between the two groups (P < .05) .In comparison to the control group (4.92±8.00)10^9/L, the platelet count in the observation group (4.77±3.41)109/L was considerably lower. The difference was statistically significant (P < .05). The comparison of total bilirubin, total protein values and alkaline phosphatase values between the two groups was not significant (P < .05). In the observation group, albumin (38.71±6.39) g/L, glutamate transaminase (23.93±26.03) U/L, glutathione transaminase (26.12±25.53) U/L, gamma-glutamyltransferase (34.28±52.3) U/L, globulin values (28.13±5.55) g/L were significantly lower than those of the control group (36.66±7.08) g/L, (30.36±65.77) U/L, (33.29±49.72) U/L, (43.76±80.23) U/L, (29.85±5.67) g/L, the difference was statistically significant (P < .05). Between the two groups, there were no significant differences in the values of uric acid or creatinine (P > .05). Levels and uric acid readings did not differ significantly, P > .05. The difference between the urea values of the observation group (7.44±6.34 mmol/L) and the control group (8.75±7.51 mmol/L) was statistically significant (P < .05). Conclusion: After the implementation of the treatment protocol for COVID-19 (Trial Version 9), the number of death cases among patients with Omicron variant infection has significantly decreased. The treatment protocol is safe and feasible and can be widely applied in clinical settings..And it will further promote the development and administration of vaccines to prevent and control the spread of the novel coronavirus, reducing the occurrence of patients and death cases.

11.
Opt Express ; 32(2): 1421-1437, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297694

RESUMO

Two-photon microscopy (TPM) based on two-dimensional micro-electro-mechanical (MEMS) system mirrors shows promising applications in biomedicine and the life sciences. To improve the imaging quality and real-time performance of TPM, this paper proposes Lissajous scanning control and image reconstruction under a feed-forward control strategy, a dual-parameter alternating drive control algorithm and segmented phase synchronization mechanism, and pipe-lined fusion-mean filtering and median filtering to suppress image noise. A 10 fps frame rate (512 × 512 pixels), a 140 µm × 140 µm field of view, and a 0.62 µm lateral resolution were achieved. The imaging capability of MEMS-based Lissajous scanning TPM was verified by ex vivo and in vivo biological tissue imaging.

12.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257705

RESUMO

Thin-walled aluminum alloy parts are widely used in the aerospace field because of their favorable characteristics that cater to various applications. However, they are easily deformed during milling, leading to a low pass rate of workpieces. On the basis of on-machine measurement (OMM) and surrogate stiffness models (SSMs), we developed an iterative optimization compensation method in this study to overcome the machining deformation of thin-walled parts. In the error compensation process, the time-varying factors of workpiece stiffness and the impact of prediction model errors were considered. First, we performed machining deformation simulation and information extraction on the key nodes of the machined surface, and an SSM containing the stiffness information of discrete nodes of each cutting layer was established. Subsequently, the machining errors were monitored through intermittent OMM to suppress the adverse impact of prediction model errors. Further, an interlayer correction coefficient was introduced in the compensation process to iteratively correct the prediction model error of each node in the SSM along the depth direction, and a correction coefficient between parts was introduced to realize the iterative correction of the prediction model for the same node position between different parts. Finally, the feasibility of the proposed method was verified through multiple sets of actual machining experiments on thin-walled parts with added pads.

13.
IEEE Trans Cybern ; 54(3): 1722-1733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37027563

RESUMO

Secure control for cyber-physical power systems (CPPSs) under cyber attacks is a challenging issue. Existing event-triggered control schemes are generally difficult to mitigate the impact of cyber attacks and improve communication efficiency simultaneously. To solve such two problems, this article studies secure adaptive event-triggered control for the CPPSs under energy-limited denial-of-service (DoS) attacks. A new DoS-dependent secure adaptive event-triggered mechanism (SAETM) is developed, where DoS attacks are taken into account when designing the trigger mechanisms. Sufficient conditions are derived to ensure the CPPSs to be uniformly ultimate boundedness stable, and the entering time when the state trajectories of the CPPSs are guaranteed to stay in the secure region is also given. Finally, numerical simulations are provided to illustrate the effectiveness of the proposed control method.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38061619

RESUMO

The experiment was conducted to investigate the effects of Bisphenol S (BPS) on growth, physiological and biochemical indices, and the expression of ecdysteroid receptor (ECR) of the red swamp crayfish (Procambarus clarkii). The gene encoding ECR was isolated from red swamp crayfish by homologous cloning and rapid amplification of cDNA ends (RACE). The ECR transcripts were 1757 bp long and encoded proteins of 576 amino acids. The quantitative real-time PCR (qRT-PCR) analysis showed that the ECR gene was expressed in various tissues under normal conditions, and the highest level was observed in the ovary and the lowest level was observed in the muscle (P < 0.05). Then, the experiment was designed with four different BPS concentrations (0, 1, 10, and 100 µg/L), BPS exposure for 14 days, three parallel groups, and a total of 240 red swamp crayfish. At 100 µg/L BPS, the survival rate, weight gain rate, and relative length rate were decreased significantly (P < 0.05). Malonaldehyde (MDA) content reached the highest level at 100 µg/L BPS. When BPS concentration was higher than 10 µg/L, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly lower than those of the control group (P < 0.05). The expression levels of the ECR gene in ovary, intestinal, gill, and hepatopancreas tissues were significantly increased after BPS exposure (P < 0.05). The ECR gene expression in ovaries and Y-organs was significantly higher than other groups in 10 µg/L BPS (P < 0.05). The expressions of the tumor necrosis factor -α (TNF-α) and interleukin-6 (IL-6) genes in the hepatopancreas gradually increased, and the highest expression was observed exposed in 100 µg/L BPS (P < 0.05). This research will provide novel insights into the health risk assessment of BPS in aquatic organisms.


Assuntos
Astacoidea , Receptores de Esteroides , Animais , Feminino , Astacoidea/genética , Receptores de Esteroides/genética , Expressão Gênica
15.
Chin Med J (Engl) ; 137(3): 329-337, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37519215

RESUMO

BACKGROUND: Pathological scars are a disorder that can lead to various cosmetic, psychological, and functional problems, and no effective assessment methods are currently available. Assessment and treatment of pathological scars are based on cutaneous manifestations. A two-photon microscope (TPM) with the potential for real-time non-invasive assessment may help determine the under-surface pathophysiological conditions in vivo . This study used a portable handheld TPM to image epidermal cells and dermal collagen structures in pathological scars and normal skin in vivo to evaluate the effectiveness of treatment in scar patients. METHODS: Fifteen patients with pathological scars and three healthy controls were recruited. Imaging was performed using a portable handheld TPM. Five indexes were extracted from two dimensional (2D) and three dimensional (3D) perspectives, including collagen depth, dermo-epidermal junction (DEJ) contour ratio, thickness, orientation, and occupation (proportion of collagen fibers in the field of view) of collagen. Two depth-dependent indexes were computed through the 3D second harmonic generation image and three morphology-related indexes from the 2D images. We assessed index differences between scar and normal skin and changes before and after treatment. RESULTS: Pathological scars and normal skin differed markedly regarding the epidermal morphological structure and the spectral characteristics of collagen fibers. Five indexes were employed to distinguish between normal skin and scar tissue. Statistically significant differences were found in average depth ( t = 9.917, P <0.001), thickness ( t = 4.037, P <0.001), occupation ( t = 2.169, P <0.050), orientation of collagen ( t = 3.669, P <0.001), and the DEJ contour ratio ( t = 5.105, P <0.001). CONCLUSIONS: Use of portable handheld TPM can distinguish collagen from skin tissues; thus, it is more suitable for scar imaging than reflectance confocal microscopy. Thus, a TPM may be an auxiliary tool for scar treatment selection and assessing treatment efficacy.


Assuntos
Cicatriz , Pele , Humanos , Cicatriz/diagnóstico por imagem , Pele/patologia , Colágeno , Imageamento Tridimensional/métodos
16.
Materials (Basel) ; 16(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38138735

RESUMO

The NbTiAlZrHfTaMoW refractory high-entropy alloy (RHEA) system with the structure of the B2 matrix (antiphase domains) and antiphase domain boundaries was firstly developed. We conducted the mechanical properties of the RHEAs at 298 K, 1023 K, 1123 K, and 1223 K, as well as typical deformation characteristics. The RHEAs with low density (7.41~7.51 g/cm3) have excellent compressive-specific yield strength (σYS/ρ) at 1023 K (~131 MPa·cm3/g) and 1123 K (~104.2 MPa·cm3/g), respectively, which are far superior to most typical RHEAs. And, they still keep appropriate plastic deformability at room temperature (ε > 0.35). The superior specific yield strengths are mainly attributed to the solid solution strengthening induced by the Zr element. The formation of the dislocation slip bands with [111](101_) and [111](112_) directions and their interaction provide considerable plastic deformation capability. Meanwhile, dynamic recrystallization and dislocation annihilation accelerate the continuous softening after yielding at 1123 K.

17.
Animals (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958096

RESUMO

The Tonnoidea Suter, 1913 (1825) is a moderately diverse group of large predatory gastropods, the systematics of which remain unclear. In the present study, the complete mitochondrial genomes of nine Tonnoidean species were sequenced. All newly sequenced mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes and two ribosomal RNA genes, showing similar patterns in genome size, gene order and nucleotide composition. The ratio of nonsynonymous to synonymous of PCGs indicated that NADH complex genes of Tonnoideans were experiencing a more relaxed purifying selection compared with the COX genes. The reconstructed phylogeny based on the combined amino acid sequences of 13 protein-coding genes and the nucleotide sequences of two rRNA genes supported that Ficidae Meek, 1864 (1840) is a sister to Tonnoidea. The monophylies of all Tonnoidean families were recovered and the internal phylogenetic relationships were consistent with the current classification. The phylogeny also revealed that Tutufa rebuta (Linnaeus, 1758) is composed of at least two different species, indicating that the species diversity within Bursidae Thiele, 1925 might be underestimated. The present study contributes to the understanding of the Tonnoidean systematics, and it could provide important information for the revision of Tonnoidean systematics in the future.

18.
Environ Sci Pollut Res Int ; 30(57): 120590-120604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945955

RESUMO

A comparative study on the mineralization of antibiotic trimethoprim (TMP) in neutral medium was investigated by applying irradiation with five types of ultraviolet lamps. Among these lamps, the whole envelope of one lamp contained ordinary quartz, which could only transmit ultraviolet-C (UVC) light. For the other four lamps, approximately one tenth, a quarter, a half, and full of envelopes were comprised of high-purity synthetic quartz, which can transmit both vacuum ultraviolet (VUV) and UVC light. TMP decay was well fitted to pseudo-first-order reaction kinetics and occurred more quickly as the VUV intensity increased. Poor mineralization was achieved in the absence of VUV light, whereas the mineralization efficiency was also enhanced with increasing VUV intensity. The presence of hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2) during VUV photolysis of water was confirmed by electron paramagnetic resonance (EPR) analysis. Appropriate radical quenching experiments and fluorescent molecular probe detection provided the evidence that •OH played a significant role in TMP mineralization. Higher VUV intensity favored the generation of H2O2 and •OH. The evolution of NH4+ and NO3- as well as carboxylic acids (formic, acetic, oxalic, and oxamic acids) released in the treated solution were quantified. Ten aromatic intermediates were also identified by UPLC-QTOF-MS. Thereby, a plausible reaction sequence for TMP mineralization in VUV/UVC photolysis was finally proposed.


Assuntos
Trimetoprima , Poluentes Químicos da Água , Vácuo , Peróxido de Hidrogênio , Quartzo , Raios Ultravioleta , Oxirredução , Fotólise , Poluentes Químicos da Água/efeitos da radiação
19.
Fish Shellfish Immunol ; 143: 109198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926202

RESUMO

The ivory shell (Babylonia areolata) is an economically important shellfish in tropical and subtropical regions, but its intensive culture and biological characteristic of hiding in the sandy substrate make it highly susceptible to ammonia stress. In this study, we investigated the dynamic changes in histopathology, oxidative stress, and transcriptome of the ivory shell at different time points under high concentration (60 mg/L) ammonia exposure. With prolonged exposure to stress, vacuoles appeared in the hepatopancreas while cell volume and intercellular space increased. The activities of superoxide dismutase (SOD) and catalase (CAT) decreased significantly under high concentrations of ammonia-induced stress while malondialdehyde (MDA) levels increased significantly. Integrated analysis of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that lipid transport primarily contributed to maintaining cellular homeostasis during the early stage of stress (6 and 12 h). Subsequently, a significant upregulation of oxidation-reduction reactions occurred at the middle stage (24 h), leading to oxidative stress. Finally, during the later stage (48 h), metabolic decomposition provided energy for survival maintenance. Additionally, lysosome and apoptosis were identified as potential key pathways in response to acute ammonia toxicity. Overall, our findings suggest that ivory shells can respond to acute ammonia toxicity via immune and antioxidant defense mechanisms but sustained high concentrations may cause irreversible damage. This study provides valuable insights into the response mechanism of mollusks towards ammonia and serves as a data reference for breeding ammonia-tolerant varieties of ivory shells.


Assuntos
Gastrópodes , Transcriptoma , Animais , Amônia/toxicidade , Amônia/metabolismo , Perfilação da Expressão Gênica , Estresse Oxidativo , Antioxidantes/metabolismo , Gastrópodes/metabolismo
20.
J Cell Immunol ; 5(3): 82-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885773

RESUMO

Heparin is a highly sulfated, hence highly polyanionic, glycosaminoglycan with a repeating disaccharide that contains a hexuronic acid, and it has been used as an anticoagulant clinically for more than half a century. Daily IP injections of small amounts of heparin in the STZ diabetic rat prevented these pathological responses even though the animals sustained hyperglycemic levels of glucose throughout. However, the structural determinant that mediates this activity is not clear. This paper describes our finding that the responses of hyperglycemic dividing mesangial cells to heparin are mediated by its non-reducing terminal trisaccharide and proposes that the non-reducing end tri-saccharide of heparin acts as a scavenger tool to detoxify the glucose toxicity in diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA